Spontaneous Combustion Potassium Permanganate and Glycerine

Purpose

To demonstrate spontaneous combustion and the effect of increased surface area on the rate of a chemical reaction.

Materials

100 mL mortar and pestle	potassium permanganate
spatula	glycerine

2 droppers

Procedure

- 1. Using a mortar and pestle, slowly grind another 5.0 grams of KMnO₄ to a **fine** powder. Place the protective shield under the mortar on the bench for protection.
- 2. With a spatula, form a depression in the center of the pile.
- 3. With a dropper, add about 5 drops of glycerine into the depression of the pile.
- 4. After a few seconds, a white puff of smoke is produced, followed by crackling, sparking and a purplish flame.
- 5. Combustion will continue until the glycerine is consumed.
- 6. The product is a grayish solid with green regions.

Additional Information

- 1. The more finely ground crystals, the faster the reaction occurs.
- 2. Handle the potassium permanganate with great care. Explosions will occur if it comes into contact with organic material.
- 3. $14 \text{ KMnO}_4 (s) + 4 \text{ C}_3\text{H}_5(\text{OH})_3 (l)$ 7 K₂CO₃ (s) + 7 Mn₂O₃ (s) + 5 CO₂ (g) + 16 H₂O (g)
- 4. Manganese oxide is black and potassium carbonate (K₂CO₃) is white. Other products must be formed. Addition of water yields a dark greenish solution and an insoluble solid. The green color may be due to potassium manganate (K₂MnO₄) and the dark insoluble solid contains Mn₂O₃ and/or MnO₂.
- 5. In the event the fire becomes too large, douse with water or sand.

Disposal

The solid can be placed in a properly labeled solid waste container.

Reference

Haight, G.P, Phillipson, D., Journal of Chemical Education, 1980; 57, 325